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Context (LPEPs)

• Idea: Train the prior on imaginary data (sample size n?)

• Use a power trick on the likelihood:

πPEP
k (θk |Mk) =

∫
f̃k(y

? | θk ,M = k, δ)πN
k (θk |M = k)∫

f̃k(y? | θk ,M = k, δ)πN
k (θk |M = k)dθk

m?(y?)p(δ)dy?dδ,

where f̃k(y? | θk ,M = k , δ) =
p
1/δ
k (y? | θk ,M=k)∫

p
1/δ
k (y? | θk ,M=k)dθk

is the normalized

power likelihood.

• Generally difficult to work with for GLMs

• Solution:

• Use un-normalized likelihoods (Fouskakis et al. (2018))

• Use Laplace approximations (Porwal and Rodriguez (2021))
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Summary (LPEPs)

• The predictive distribution m?(y?) does not depend on δ

• Three choices for δ are suggested:

• Use δ = n = n?

• Use hyper-g/n prior

• Use a robust prior

• Model selection consistency is guaranteed under some regularity
conditions

• Computationally tractable, can be incorporated in standard MCMC

• Good empirical performance
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Bayesian GLMs under misspecification I

• Even when the model is wrong, we would still like our Bayesian
methods to perform well (find the “closest” approximation to
the truth):

• Standard Bayes does not always work:
Kleijn and van der Vaart (2012); Müller (2013); Holmes and Walker
(2017), etc.
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Bayesian GLMs under misspecification II

• One can consider generalised posteriors as a remedy:

π(θ | y) ∝ p(y | θ)ηπ(θ)

• de Heide et al. (2020) shows that in the context GLMs, we have
consistency and (almost) optimal convergence rates as long as

• prior has continuous strictly positive density

• η < 1 is sufficiently small

• regularity conditions are satisfied

• Selecting appropriate learning rate η is hard: Grünwald and van
Ommen (2017); Holmes and Walker (2017); Lyddon et al. (2019);
Syring and Martin (2019).
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Bayesian GLMs under misspecification III

Good empirical performance (with the right η):
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Questions

• Is there a way to address potential misspecification?

• Poor performance as the number of non-zero coefficients in the true
model increases?

• What is needed to generalise to the case when p grows with n? Is
there any hope for p = n or p > n?

Catalytic prior distributions (Huang, Stein, Rubin, and Kou (2020))?
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Summary (Factor models)

For binary data yij ∈ {0, 1}

yij ∼ Ber(θij), θij = Gj(µj + αT
j βi ),

where αj , βi ∈ Rd ,1 ≤ i ≤ I , 1 ≤ j ≤ J, αj , βi ∈ Rd , and d � J.

Challenges:

• Selecting the correct dimension d

• Choice between parametric vs nonparametric priors on the latent
traits

• Potential benefit from using geometry other than Euclidean

• Utility functions that use geodesic distances
• Focus on spherical models: coming up with a right prior

Yu and Rodriguez (2020). A Bayesian Approach to Spherical Factor Analysis for

Binary Data. arXiv preprint arXiv:2008.05109.
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Bayesian analysis on manifolds

• Thomas Bayes’ walk on manifolds (Castillo, Kerkyacharian, and
Picard (2014))

• Bayesian manifold regression (Yang and Dunson (2016))

• Density estimation and modeling on symmetric spaces (Li, Lu,
Chevallier, and Dunson (2020))

• Poisson process intensity estimation on manifolds (Giordano,
Kirichenko, and Rousseau (2022+))

Remarks:

• Focus on the regression/density estimation

• Mostly Gaussian process based or piece-wise constant

• Mostly assume manifold is known
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Questions II

• Can we benefit from the existing literature on priors on manifolds?

• Any guidance to choosing the geometry/manifold family? Are nested
manifolds preferable?
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